
J Glob Optim (2006) 36:461–469
DOI 10.1007/s10898-006-9021-4

ORIGINAL ARTICLE

Approximating data in �n by a quadratic underestimator
with specified Hessian minimum and maximum
eigenvalues

J. B. Rosen · John Glick

Received: 8 March 2006 / Accepted: 8 March 2006 / Published online: 15 June 2006
© Springer Science+Business Media B.V. 2006

Abstract The problem of approximating m data points (xi , yi) in �n+1, with a quadratic
function q(x, p) with s parameters, m ≥ s, is considered. The parameter vector p ∈ �s

is to be determined so as to satisfy three conditions: (1) q(x, p) must underestimate all m
data points, i.e. q(xi , p) ≤ yi , i = 1, . . . , m. (2) The error of the approximation is to be
minimized in the L1 norm. (3) The eigenvalues of H are to satisfy specified lower and upper
bounds, where H is the Hessian of q(x, p) with respect to x . This is called the Quadratic
Underestimator with Bounds on Eigenvalues (QUBE) problem. An algorithm for its solution
(QUBE algorithm) is given and justified, and computational results presented. The QUBE
algorithm has application to finding the global minimum of a basin (or funnel) shaped func-
tion with a large number of local minima. Such problems arise in computational biology
where it is desired to find the global minimum of an energy surface, in order to predict native
protein-ligand docking geometry (drug design) or protein structure. Computational results
for a simulated docking energy surface, with n = 15, are presented. It is shown that specify-
ing a small condition number for H improves the ability of the underestimator to correctly
predict the global minimum point.

Keywords Underestimating approximation · eigenvalue bounds · global minimization ·
protein docking

1 Introduction

There are a number of applications in computational biology where it is desired to approx-
imate data in �n by a quadratic function with specified properties. Typically, we want a
quadratic approximation which is convex, and which underestimates all the data points

J. B. Rosen (B)
Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
CA 92093, USA
e-mail: jbrosen@cs.ucsd.edu

J. Glick
Department of Mathematics and Computer Science, University of San Diego, San Diego, CA 92110, USA
e-mail: glick@sandiego.edu

462 J Glob Optim (2006) 36:461–469

(Dill et al. 1997; Rosen and Marcia 2004). This convex underestimator is used as part of
an iterative algorithm to determine the global minimum of a basin (or funnel) shaped energy
function with a large number of local minima. Such problems arise in computational biology
where it is desired to find the global minimum of an energy surface, in order to predict native
protein-ligand docking geometry (drug design) or protein structure (Mitchell et al. 1999;
Powers et al. 2002; Wei et al. 2004; Marcia et al. 2005).

The quadratic underestimator in �n is represented by:

q(x, p) = α + cT x + 1
2 xT H x, x ∈ �n, (1)

where p ∈ �s represents the s = 1
2 (n + 1)(n + 2) parameters α, c ∈ �n , and the ele-

ments of the symmetric matrix H . The parameters p are determined so as to minimize
the L1 approximation error in the fit of q(x, p) to m data points (xi, yi), i = 1, . . . , m,
where m ≥ s. In typical applications, the data points (xi, yi) are local minima of a function
f (x) which represents a basin-shaped energy surface in �n . The function f (x) will typi-
cally have a very large number of local minima and will be computationally expensive to
evaluate.

Here, we consider a somewhat more general quadratic underestimating function, which
includes the convex quadratic as a special case. Two bounds are specified (µ1 and µn), rep-
resenting the minimum and maximum eigenvalues of the symmetric Hessian matrix H . The
algorithm, which we summarize next, guarantees that the elements of H are determined so
that the eigenvalues of H satisfy these bounds, and the L1 approximation error is minimized.
We call this the Quadratic Underestimator with Bounds on Eigenvalues (QUBE) problem.
This differs from the problem considered by Dill et al. (1997), which requires the Hessian
matrix to be diagonal with positive entries, and by Rosen and Marcia (2004), which does not
allow for upper and lower bounds on the eigenvalues of the Hessian matrix.

In the QUBE problem, if the lower bound is non-negative, we have the convex case. How-
ever, for some applications an indefinite quadratic, with specified minimum and maximum
eigenvalues, may be useful.

The algorithm will now be summarized. Determination of the parameters p, so as to
minimize the L1 error, is formulated as a sequence of major iterations, each of which is a
linear program. After each major iteration, the eigenvalues of H are computed. If the ei-
genvalues of H satisfy the specified bounds, the desired approximation has been obtained,
and the algorithm terminates. Otherwise, at least one new linear inequality is added and
the next major iteration carried out. Convergence of this algorithm is shown, and compu-
tational tests presented showing that typically only a small number of major iterations are
required.

Each new linear inequality constraint is in fact a cutting plane which excludes a finite
region of the parameter space where the eigenvalues of H violate the specified bounds. More
specifically, consider only the minimum eigenvalue of H . Let µ1 be the specified lower
bound, and λ1(H) the minimum eigenvalue of H , with u1(H) the corresponding eigenvec-
tor, where ‖u1‖ = 1. Since Hu1 = λ1u1, we have uT

1 Hu1 = λ1. Suppose λ1 < µ1. Then the
constraint uT

1 Hu1 ≥ µ1 will cut off a finite region of parameter space where λ1(H) < µ1.
Note that the constraint uT

1 Hu1 ≥ µ1, is linear in the elements of H . The algorithm is
described in detail in Sect. 3.

For the special case where µ1 = 0 and µn = ∞, the problem can be formulated as a
positive semi-definite program (Alizadeh et al. 1997). However, to our knowledge, no method
for the more general case considered here, has been presented.

J Glob Optim (2006) 36:461–469 463

2 Determination of quadratic underestimator by a cutting plane algorithm

We consider the problem of determining the parameters p ∈ �s of the quadratic function
q(x, p) as given by (1), with specified bounds on the eigenvalues of its Hessian H , so that it
underestimates a set of m ≥ s data points in �n , and minimizes the error of approximation
in the L1 norm. We show how this can be done efficiently by a sequence of linear programs,
with one (or more) cutting plane added to each new linear program.

The s parameters to be determined are the elements hi j of the symmetric matrix H (spec-
ified by h ∈ �t), the vector c ∈ �n and the scalar α, as given by (1). We impose a large
bound ρ on the absolute value of each parameter, so that p is contained in a hypercube in �s .
Thus, there are a total of s = t + n + 1 parameters to be determined, where t = 1

2 n(n + 1)

is the number of parameters in h. We denote by λ1(h) and λn(h) the minimum and max-
imum eigenvalues of H(h). Also let u1(h) and un(h) be the corresponding eigenvectors,
with ‖u1‖ = ‖un‖ = 1. We specify a lower bound µ1 for λ1(h), and an upper bound µn for
λn(h). To simplify the presentation, we consider only the lower bound. The upper bound is
imposed in an obvious manner similar to the lower bound (see QUBE Algorithm).

We consider the hypercube � ∈ �t , where |hi j | ≤ ρ. For each point h ∈ �, the Hessian
has a minimum eigenvalue λ1(h). Given a lower bound µ1, the requirement λ1(h) = µ1

defines a surface in �, which partitions � into two subdomains, �+ : λ1(h) ≥ µ1, and
�− : λ1(h) ≤ µ1. �+ and �− are each closed and bounded.

Theorem 2.1 The subdomain �+ is convex.

Proof Let h1 and h2 be any two points in �+. We have λ1(h1) ≥ µ1, and λ1(h2) ≥ µ1.
Now consider the point h̄ = 1

2 (h1 + h2). We show that λ1(h̄) ≥ µ1. We have H(h̄) =
1
2 (H(h1) + H(h2)). Note that

λ1(h1) = min‖z‖=1
(zT H(h1)z),

λ1(h2) = min‖z‖=1
(zT H(h2)z) and

λ1(h̄) = min‖z‖=1
(zT H(h̄)z),

for z ∈ �n . Then

λ(h̄) = 1
2 min‖z‖=1

[zT (H(h1) + H(h2))z] ≥ 1
2 (λ1(h1) + λ1(h2))

≥ µ1. ��
We note that the hypersurface λ1(h) = µ1 in � is the boundary of the convex subdomain

�+.
We now describe and justify the use of a cutting plane algorithm to determine the opti-

mum parameter vector p ∈ �s , such that q(x, p) minimizes the approximation error, and its
Hessian H has a minimum eigenvalue ≥ µ1.

Consider any point h̄ ∈ �t , such that λ1(h̄) = λ̄1. If ū is the corresponding eigenvector
to this minimum eigenvalue then H(h̄)ū = λ̄1ū, or ūT H(h̄)ū = λ̄1, since ‖ū‖ = 1. But
ūT H(h)ū is linear in the elements of h. Specifically, let

hT = (h11, h22, . . . , hnn, h12, h13, . . . , hn−1,n) ∈ �t and

gT (u) = (u2
1, u2

2, . . . , u2
n, u1u2, u1u3, . . . , un−1un) ∈ �t ,

(2)

464 J Glob Optim (2006) 36:461–469

where ui is the i th element of u. Then gT (ū)h = ūT H(h)ū = λ1(h̄) is a supporting hyper-
plane to the surface λ1(h) = λ̄1 at h̄. Note that g(ū) is the gradient of λ1(h) at h̄.

Now, consider any point ĥ in the interior of �−. Then λ1(ĥ) = λ̂1 < µ1, with corre-
sponding eigenvector û. The linear equality gT (û)h = ûT H(ĥ)û = µ1, will strictly separate
ĥ and the convex set �+. Furthermore, the inequality

gT (û)h ≥ µ1 (3)

will eliminate a finite region of �− from the feasible set. Therefore, the inequality (3) is a
cutting plane with respect to ĥ and �+.

The algorithm can now be summarized as follows. We first solve a linear program (LIP),
which minimizes the approximation error in q(x, p) in the L1 norm, subject to 3 m linear
inequality constraints, which define a polyhedral set �̂, which is an approximation to �+
(see Sect. 3). The (LIP) gives a point p̂ ∈ �s , and ĥ ∈ �t . If λ1(ĥ) ≥ µ1, (i.e., ĥ ∈ �+), then
p̂ is the optimal solution to the problem. Otherwise, we add a cutting plane (3) corresponding
to each eigenvalue of H(ĥ) < µ1. The (LIP) with the additional inequality constraints (3)
is again solved. This is repeated until λ1(ĥ) ≥ µ1 − ε, for some small tolerance ε. This will
give the underestimator q(x, p) with the minimum L1 norm approximation to the data, and
λ1(ĥ) ≥ µ1 − ε. We call this an ε-optimal solution to the QUBE problem.

In Sect. 3, we give the linear program formulation and the QUBE algorithm. In Sect. 4,
we show that the algorithm converges in a finite number of steps, to an optimum point p̂ in
the parameter space. In Sect. 5, we give the computational results for problems with n = 15.
Similar computational results were obtained for n = 5, 10 and 20. In all these computational
results the optimal p̂ was obtained with no more than six major iterations of the QUBE
algorithm.

3 Linear program formulation and algorithm

Initially, we solve a linear program, which determines the parameter vector p ∈ �s , so as to
minimize the L1 norm of the error of the quadratic underestimator q(x, p) in approximating
the m data points (xi , yi). This LP is given by:

min
p∈�s

m∑

i=1

[yi − q(xi , p)] (4)

(L1P) subject to

yi − q(xi , p) ≥ 0, i = 1, . . . , m,

µ1‖xi‖ ≤ xT
i H xi ≤ µ2‖xi‖, i = 1, . . . , m, (5)

−ρ ≤ p j ≤ ρ, j = 1, . . . , s,

where q(x, p) is given by (1).
This LP has s = O(n2) bounded variables, and 3m + 2s inequality constraints, which

represent the polyhedral set �̂.
The result of (L1P) is a parameter vector p̂, and corresponding Hessian parameter vector

ĥ. If λ1(ĥ) ≥ µ1, then q(x, p̂) is the optimal solution to the underestimator approximation
problem. Otherwise add one or more cutting plane inequalities and continue. Details are
given in the following QUBE algorithm, which computes an ε-optimal solution to the QUBE
problem.

J Glob Optim (2006) 36:461–469 465

Algorithm: Quadratic Underestimator with Bounds on Eigenvalues (QUBE)

1. Solve initial L1P to get H . Compute eigenvalues of H .
2. While (∃ eigenvalues of H ≤ µ1 − ε OR ≥ µ2 + ε)

(a) Add cutting plane inequality constraints to L1P.
(b) Solve L1P to get H . Compute eigenvalues of H .

Add cutting plane constraints:

• For each eigenvalue violating bounds, add a cutting plane inequality constraint.
• For eigenvalue λ j (H) ≤ µ1 − ε, and u j the corresponding eigenvector, add constraint

uT
j Hu j ≥ µ1.

• For λk(H) ≥ µ2 + ε, add uT
k Huk ≤ µ2.

4 Convergence of QUBE algorithm

Since, the QUBE algorithm is a cutting plane algorithm, the proof of its convergence follows
that of a general cutting plane algorithm. (see, e.g., Bazarra and Shetty 1979, p 248]. We
first prove several properties of the QUBE algorithm, and then show convergence of the
algorithm. As we did in Sect. 2, to simplify the discussion, we assume that there is only a
lower bound on the eigenvalues of H .

Lemma 4.1 The sequence of matrices H generated by the iterations of the QUBE algorithm
(recall that the solution p of LIP contains the entries of H) are contained in a compact set.
Also, the eigenvectors u j of the out-of-bounds eigenvalues (that are used to define additional
cutting plane constraints) are also contained in a compact set.

Proof These follow directly from the bound constraints placed on the elements of p in the
linear program L1P, and from the continuity of the elements of eigenvectors with respect to
the corresponding eigenvalues. ��

Lemma 4.2 At each iteration of the QUBE algorithm, the matrix H satisfies all of the cutting
plane constraints so far generated by the algorithm.

Proof This follows from the fact that the cutting planes are constraints of the linear program
part of whose solution is H , and by the fact that no cutting plane constraints are ever removed
from the linear program. ��

Lemma 4.3 The mapping from an out-of-bounds eigenvalue of H (i.e., λ j (H) < µ1) to its
corresponding eigenvector (u j) is closed.

Proof This follows from the continuity of the eigenvalues of a matrix with respect to the
entries in the matrix, and from the continuity of the elements of eigenvectors with respect to
the corresponding eigenvalues. ��

Lemma 4.4 In step 2 of the QUBE algorithm, if H has an out-of-bounds eigenvalue and a
new cutting plane constraint is added (uT

j Hu j ≥ µ1), then the current value of H violates
this constraint.

466 J Glob Optim (2006) 36:461–469

Proof This is proven in Sect. 2, where we show any point in �− (i.e., those H that have
out-of-bounds eigenvalues) are strictly separated from �+ by the added cutting plane
constraint. ��

Convergence Theorem The QUBE algorithm converges in a finite number of steps to an
ε-optimal solution, with the parameter vector p satisfying (L1P), and the eigenvalues of H
between µ1 − ε and µn + ε, for any ε > 0.

Proof Consider a sequence of iterations of the QUBE algorithm. Without loss of generality,
we can assume that at most one cutting plane constraint is added with each iteration. Then
let {Hk} be the sequence of matrices H generated by the iterations of the QUBE algorithm,
and let {uk} be the sequence eigenvectors corresponding to the out-of-bounds eigenvalues.
Lemma 4.1 implies that both {Hk} and {uk} must have convergent subsequences. Let {Hk}κ
and {uk}κ be these subsequences, and let H and u be their limits. By Lemma 4.2, we can say
that for any k, uT

k Hluk ≥ µ1 for all l > k. Because the mapping from H to its out-of-bounds
eigenvalue is closed (Lemma 4.3), we can conclude that in the limit this inequality is also
true; that is, uT Hu ≥ µ1. H , however, cannot have any out-of-bounds eigenvalues, because
otherwise this inequality violates Lemma 4.4. This in turn implies that the vector p that
contains Hmust be optimal, because p is the solution to (LIP), and the eigenvalues of H are
within its bound. Convergence in a finite number of steps is achieved by requiring only that
the eigenvalues are not out-of-bounds by more than ε. ��

5 Computational results

The QUBE algorithm has been tested on a range of problems in n-dimensional space, with
n = 5 up to n = 20. The data points to be approximated by the quadratic underestima-
tor were generated by simulating the energy surface for a protein-ligand docking problem
(Mitchell et al. 1999; Rosen and Marcia 2004; Marcia et al. 2005). Each of the m points
represents a local minimum of the energy surface, which is assumed to be basin-shaped with
many local minima. We used m = 2s, and for n = 15, this gives t = 1

2 n(n + 1) = 120,
and s = t + n + 1 = 136, so that m = 272. The energy surface function was defined in a
hypercube with edges of length 10. The basin-shaped function was represented by perturbing
a convex quadratic function f (x), where f (x) = bT x + 1

2 xT Qx . More specifically, each of
the local minimum points (xi , yi), i = 1, . . . , m was generated by randomly choosing each
xi in the hypercube interior, and then letting yi = f (xi)+η, where η is the perturbation, ran-
domly chosen in [−γ, γ]. Thus each data point (xi , yi) is assumed to be a local minimum of
the energy surface, and the minimum x p = −H−1c of the quadratic underestimator q(x, p)

is used as a prediction of the true global minimum xg min of the simulated energy surface.
As is explained below, this global minimum point is chosen so as to be contained in the
hypercube. A successful quadratic underestimator will typically be a good approximation to
f (x), so that ‖x p − xg min‖ should be relatively small. This distance will of course increase
with increasing γ .

The matrix Q used to construct the simulated energy surface f (x) is generated as follows.
An n × n matrix A with random elements in [0, 9] is first formed. Then the symmetric,
positive definite, matrix Q = AT A + δ I, δ > 0, is computed. The value of δ is specified
so as to impose a reasonable upper bound on the condition number of Q. The vector b is
determined by xg min = −Q−1b, where xg min is chosen as a strictly interior point of the
initial hypercube. Suppose that the imposed lower and upper bounds µ1 and µn , on the ei-
genvalues of H , are such that µ1 ≤ λ1(Q) and µn ≥ λn(Q), where λ1(Q) and λn(Q) are

J Glob Optim (2006) 36:461–469 467

the minimum and maximum eigenvalues of Q, and the condition number of Q, cond(Q), is
given by λn(Q)/λ1(Q). Then if γ = 0, the solution to L1P will give q(x, p) = f (x), with
zero error, and all m data points interpolated. We will also have H = Q, and c = b, so that
x p = xg min. For γ > 0, we will get x p
= xg min, and only some of the data points will be
interpolated (usually approximately half of them). On the other hand, if one or both of the
inequalities for µ1 and µn are not satisfied then even for γ = 0 we cannot get H = Q, so
‖x p − xg min‖ > 0. However, for γ > 0 the value of ‖x p − xg min‖ may actually be smaller,
for any specific γ > 0, when µ1 > λ1(Q) and µn < λn(Q), so that the condition number
of H is less than that of Q. To investigate this, we tested the two possibilities:

Type A bounds : µ1 = λ1(Q) − σ, µn = λn(Q) + σ,

Type B bounds : µ1 = λ1(Q) + σ, µn = λn(Q) − σ,

where σ is a specified positive constant. Typically, we get λ1(H) ∼= λ1(Q) and λn(H) ∼=
λ1(Q), for type A bounds, and λn(H) ∼= λ1(Q) + σ and λn(H) ∼= λn(Q) − σ , for type B
bounds. Therefore, cond(H) will be smaller for type B than for type A bounds.

We now summarize the results of the computational tests carried out. Several hundred
individual runs were made, using values of n = 5,10,15 and 20. A different random seed
was used for each run, so that the matrix A (and therefore, Q) was different for each run. The
results obtained for n = 15 are given in Table 1. The results for other values of n were similar.
For the results presented the parameter values δ = 1.5, σ = 1.0 and ε = 0.1 were used. The
minimum eigenvalue of Q was in the range [1.50, 1.74], the maximum in the range [42.9,
61.0] and the condition number of Q was in the range [28.5, 39.9]. The number of data points
used was 272, and the number of parameters, s = 136, so for this overdetermined system
there will always be an error in the underestimating approximation, except for the special case
of type A bounds and γ = 0. In general, about 50% of the data points will be interpolated.

Table 1 shows, for each value of γ and each bound type, the following results: (1) Number
of initial violations of the imposed lower and upper bounds. (2) Number of iterations required
to satisfy the termination test. (3) Number of data points interpolated. (4) Average CPU time
required to solve. (5) Edge length of reduced hypercube known to contain both x p and xg min.
For (1), (2), (3) and (5) the minimum and maximum value of each quantity, and for (4), the
average time, is shown. The minimum and maximum values, and the average, are over all
runs made for the specified bound type and γ value. Typically, for bound type B, both lower
and upper bounds were initially violated.

Table 1 Table of results for n = 15

Bound γ # Init. violats # Itns. # Interp. Points CPU Time(s) Hypercube edge len.
type

Min Max Min Max Min Max Avg Min Max

A 0 0 0 1 1 272 272 151 0 0
A 5 0 0 1 1 136 136 155 0.036 0.050
A 10 0 0 1 1 136 136 178 0.110 0.156
A 20 0 0 1 1 136 136 183 0.118 0.360
A 40 0 1 1 3 134 136 167 0.378 0.790
B 0 3 4 4 4 131 131 239 0.104 0.110
B 5 3 4 2 5 129 133 191 0.100 0.120
B 10 3 4 2 5 129 133 189 0.132 0.186
B 20 3 4 3 5 131 132 189 0.170 0.244
B 40 3 3 5 6 131 131 169 0.328 0.372

n = 15, m = 272, δ = 1.5, σ = 1.0 and ε = 0.1

468 J Glob Optim (2006) 36:461–469

The solution time depends primarily on the time required to solve the initial (LIP). Since,
the number of both variables and inequality constraints is O(n2), it is reasonable to assume
that the time dependence of the initial linear program will be O(n4). This is what we ob-
served for n = 5,10,15 and 20. The total solution time for n = 15 is seen to be approximately
3 min. The total solution time for n = 5 was approximately 1 s. No significant dependence
of total solution time on the number of iterations required is seen, at least for the number
of iterations ≤ 6. This is because we add only one inequality constraint to the primal (LIP)
for each violated bound. The resulting LP is then solved as the dual problem, starting with
the optimal basis from the initial (LIP). Since each violated bound simply adds a column
to the dual tableau, this only requires a few basis changes to achieve optimality. Therefore,
the additional time required is negligible, unless many bounds are violated.

The effectiveness of the QUBE algorithm in predicting xg min is measured as follows.
Initially, we know that xg min lies in a hypercube in �n with edge length 10, so its volume is
10n , and this is the initial search domain. For each run we determined the smallest hypercube,
with x p at its center, that contained xgmin. Since both x p and xgmin are known, this is easily
determined. We denote by d the length of an edge of this reduced hypercube. The reduced
hypercube will have a volume of dn , so that after applying the QUBE algorithm, the search
domain volume will have been reduced by a factor of (10/d)n . For n = 15, the maximum
d ≤ 0.79, and the minimum d ≤ 0.38. Therefore, the hypercube volume was always reduced
by a factor of at least (10/0.79)15 = 34.3 × 1015, for the n = 15 tests.

We note from Table 1 that the size of the reduced volume is smaller for type B bounds (and
larger values of γ). We also noted earlier that cond(H) is smaller for type B bounds. This result
is also confirmed by other tests. This suggests that a good general strategy in typical docking
applications (when Q is not known) is to choose the bounds µ1 and µn so that cond (H) is
relatively small, say ≤ 30. This is easily done by letting, for example, µ1 = 1.0 and µn = 30.

In a realistic model of a docking energy surface, the true global minimum, xg min, is of
course not known. The assumption is that the predicted global minimum, x p , is close to xg min,
and that xg min is contained in the reduced hypercube volume centered at x p , as in the test
cases. To actually locate xg min more accurately in a real docking application, a final search
in the reduced hypercube is carried out. Typically, this would consist of local minimizations
from randomly chosen initial points in the reduced hypercube. The local minimum point with
the lowest energy value would then be chosen as xg min.

Acknowledgement The work of the first author was supported in part by the National Science Foundation
grant 0082146.

References

Alizadeh, F., Haeberly, J.P.A., Overton, M.L.: Complementary and non-degeneracy in semidefinite
programming. Math. Prog. 77, 111–128 (1997)

Bazarra, M.S., Shetty, C.M.: Nonlinear Programming, pp. 248–250. Wiley, New York (1979)

Dill, K.A., Phillips, A.T., Rosen, J.B.: Cgu: an algorithm for molecular structure prediction. In: Large-scale
Optimization with Applications, Part III, vol. 94 of IMA Vol. Math. Appl. pp. 1–21. Springer, Berlin
(1997)

Marcia, R.F., Mitchell, J., Rosen, J.B.: Iterative convex quadratic approximation for global optimization in
protein docking. Comput Optim Appl 32, 285–297 (2005)

Mitchell, J.C., Rosen, J.B., Phillips, A.T., Ten Eyck, L.F.: Coupled optimization in protein docking. In:
Proceedings of the Third Annual International Conference on Computational Molecular Biology, pp.
280–284. ACM Press, New York (1999)

J Glob Optim (2006) 36:461–469 469

Powers, R.A., Morandi, F., Shoichet, B.K.: Structure-based discovery of a novel, non-covalent inhibitor of
ampc beta-lactamase. Structure 7, 1013–1023 (2002)

Rosen, J.B., Marcia, R.F.: Convex quadratic approximation. Comput Optim Appl 28, 173–184 (2004)
Veinott, A.F.: The supporting hyperplane method for unimodal programming. Oper Res 15, 147–152 (1967)
Wei, B.Q., Weaver, L., Ferrari, A.M., Matthews, B.M., Shoichet, B.K.: Testing a flexible-receptor docking

algorithm in a model binding site. J Mol Biol 5, 1161–1182 (2004)

